

4400 Mobile Phone Tester Series

Boosting wireless efficiency

The high end of multi-standard mobile phone testing

The 4400 Mobile Phone Tester Series is a leading-edge product and a good example of Willtek's expertise in RF test and measurement. The instruments of the 4400 Series have been designed to meet the needs of manufacturing, quality assurance, and engineering facilities as well as the requirements in service factories and repair sites. Willtek fulfills these requirements with two different versions of the 4400; the 4403 for service applications and the 4405 for the production environment.

Unless indicated otherwise, all information in this data sheet relates to both the 4403 and the 4405 Mobile Phone Testers.

Improving manufacturing throughput

In manufacturing and production, accuracy is a key factor. Therefore the 4405 Mobile Phone Tester provides exceptional precision, see for example the Voltage Standing Wave Ratio (VSWR). In addition to this outstanding accuracy, the 4405 offers high measurement speed and stability, which makes the 4405 the first choice for production and manufacturing.

With the remote control possibility via the IEEE/IEC bus (GPIB), the 4400 will be easily integrated in every production line. Willtek's experienced support personnel helps manufacturers all over the world to integrate the 4400 into new and existing production lines.

Mobile phone repair from incoming inspection to calibration and alignment

Measurement speed and accuracy of the 4403 Mobile Phone Tester fulfill the needs of the service environment to calibrate and align a mobile phone and then perform a final test. These final tests are different and predefined by major mobile phone manufacturers, and the 4400 Series has been approved for service by all of them.

Today the 4403 Mobile Phone Tester supports and provides solutions for all major mobile communication technologies and is prepared for the future evolution of these standards like HSUPA.

With its user-friendly menu concept and graphical user interface, the 4403 provides quick access to all the measurements and their results. The menus are easy to read and follow the same concept across all standards to keep training time to a minimum.

Measurements cannot only be performed in manual mode but also in a self-contained, automatic test script which is run on

Highlights

- All major mobile communication standards
- Prepared for HSPA
- RAPID! built-in automated test environment
- Options for DC power supply and DC current measurements
- Parallel testing of TX, RX and Audio

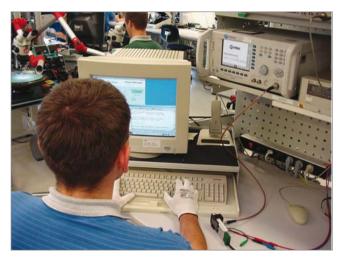


Figure 1: 4403 Mobile Phone Tester – the ideal tool for service centres and the repair loop in production

the 4403. With RAPID!, a runtime and development environment for applications embedded in the tester, users can perform a complete final test in a very short time. Example test scripts for different communication standards are available on the tester.

The 4400 series is approved for service by major mobile phone vendors. These provide special software to align and calibrate the phone. In most cases the vendors adapt their control software to the 4400, making use of the remote control capabilities of Willtek's testers.

Research & development

Engineering and R&D facilities such as design houses require measurement equipment which is easy to use, and which provides high accuracy. With the 4400 Mobile Phone Tester Series, Willtek offers two instruments with the same functionality but different performance, leaving the choice of accuracy to the customer.

Specifications

Specifications valid after 60 minutes warm-up time at ambient temperature, specified environmental conditions and typical measurement range, within a period of one year after calibration.

The published accuracies are determined in accordance with GUM (Guide to the Expression of Uncertainty in Measurement) and EA (European Co-operation for Accreditation) application document EA4/02: "Expressions of the Uncertainty of Measurements in Calibration".

Basic RF data

Two independent synthesisers for RX and TX measurements

Frequency range	430 to 50	0 MHz ⁽¹⁾
	800 to 1	000 MHz
	1700 to 2	300 MHz
Additional frequency rar	ige with the	
1209 Downconverter ⁽²⁾		29.6 MHz
	600.0 to 80	00.0 MHz
1	564.8 to 170	64.8 MHz
2	329.6 to 252	29.6 MHz
2	400.0 to 260	00.0 MHz
Frequency resolution		10 Hz
Frequency and level sett	ling time	350 µs
RF in/out N-t	ype female o	connector
Input/output impedance	,	50 Ω
VSWR		
4403		1.2
4405	1.	15 ⁽³⁾ , 1.2
Attenuation of harmonic	s up to 4 GH	lz
(f0 = 800 to 1000 and 1	700 to 200	0 MHz)
		> 40 dB
Attenuation of non-harn	nonics	
up to 4 GHz at > 5 kHz f	rom carrier	> 43 dB

TCXO frequency base

Temperature characteri	stic 1 x 10 ⁻⁶ max.
Aging characteristic	1 x 10 ⁻⁶ max./year
	(at +25°C ±2°C)

OCXO frequency base (option)

Temperature characteristic	5 x 10 ⁻⁸ max.
Aging characteristic	1 x 10 ⁻⁷ max./year

External synchronisation input

Input level	0 to +15 dBm
Impedance	50 Ω
Frequency	5, 10, 13 MHz (autodetection)

(1) Not available with WCDMA and TD-SCDMA

(2) With 1209 Downconverter. Different input and output level ranges apply, see separate data sheet for the 1209 Downconverter.

(3) If RX signal > -32 dBm and TX signal > 10 dBm

General data

Control interfaces IEEE 488.2 (GPIB) LAN (RJ-45, TCP/IP) USB type A (two on the front, two on the back) USB type B Centronics (for printing) PS/2 keyboard) PS/2 mouse VGA RS-232 (access through RAPID!) Mains power supply (AC) 94 to 132 V 187 to 264 V Power consumption max. 140 W Operating temperature +5°C up to +45°C Relative humidity < 80% HXWXL 202 x 401 x 431 mm Weight 10.5 kg (without options) **Delivery** includes mains cable USB memory stick getting started guide user's guides (CD) calibration report

RAPID!

Application programming environment RAPID! = Run Application Programs with Integrated Development environment.

RAPID! programming language (a modern structured BASIC dialect) programming environment Input/output control from RAPID! programs GPIB RS-232 parallel port (printer) floppy and hard disk access screen (text-based) keyboard, incl. bar code reader support Elements for structured programming global and local variables functions, subroutines libraries Elements for event-driven programming keyboard events SCPI events external interface events Other programming features direct access to SCPI command set, to control the 4400 and collect measurement results for postprocessing information hiding (program files can be protected against reading by the user) Scripting (to create or change mobile tests easily and efficiently) Functions of built-in programming environment file manager editor (multiple files)

runtime I/O screen debug screen, display of variables contents

Figure 2: The 1209 Downconverter is an optional frequency extension for Bluetooth, WLAN, GPS tests and Mobile TV standards.

General Options

RAPID!

RAPID! stands for Run Application Programs with Integrated Development, and is a combination of the simple-to-use programming language BASIC with the powerful SCPI command language developed for the 4400.

Test scripts are available to test GSM/GPRS/EDGE,

CDMA2000/1xEV-DO or WCDMA/UMTS. Willtek can help you to setup your own script according to your requirements; you can request this service at support@willtek.com.

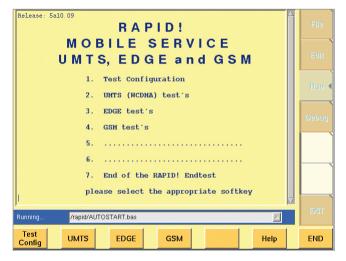


Figure 3: Start menu for evaluation tests provided in RAPID!

4470 Audio Option, 4471 Basic Codec Option and 4472 Codec Extension Option

With Willtek's 4400 Series and the Audio and Codec options, Willtek provides complete testing solutions for mobile phones.

The Audio and Codec Options for the Willtek 4400 Series help to measure and test the audio capabilities of the mobile phone, ensuring its high quality. These options have been designed for the particular needs of R&D, production, repair/ service and quality assurance.

The options can be easily integrated in the Willtek 4400 Mobile Phone Tester, resulting in a compact RF and AF test system.

Audio

The Audio Option can test and evaluate the individual audio components or the complete audio path of the mobile. There are different ways to stimulate the mobile phone and to verify the audio quality. The generated signal can be fed into a loudspeaker to stimulate the microphone; it can also stimulate the mobile at the headset input. Using the codec options, you can transmit voice signals even over the GSM traffic channel.

The audio signal from the mobile can be evaluated using either the basic audio analyzer or the unique audio spectrum analyzer. A high impedance AF input, an auxiliary input for the microphone and the traffic channel (using the additional codec options) can be used as sources for the analysis.

Codecs

There are two different codec options for GSM available: the 4471 Basic Codec Option for Full Rate (FR) speech and the 4472 Codec Extension Option for Enhanced Full Rate (EFR). These codecs supplement the audio measurements, allowing audio signals to be generated and tested via the air interface.

4481 AM Signal Generator Option

The AM Signal Generator allows the tuning of certain phones in asynchronous (or non-call) mode. The modulation index and the modulation signal can be varied to support some vendor-specific AM suppression measurements.

4488 Parallel Multiple Phone Test Package

Today service centres are continuously under pressure to reduce test times. The Willtek 4400 Mobile Phone Tester series already boosts an extremely short test time of between 10 to 12 seconds for a dual-band phone. Setting up the phone for testing is time-consuming, i.e. inserting the phone into the test jig and synchronising it with the Willtek 4400 Mobile Phone Tester.

The parallel multi-phone test is the answer. It allows the technician to set up a GSM phone for testing, whilst the Willtek 4400 Mobile Phone Tester is testing another GSM phone. The test set up offered by the multiple phone test permits up to four phones to be connected (either directly by dedicated cable, or by antenna coupler and shield box). Each phone requires its own antennna coupler and RF Shield.

Available test sequences can be individually configured, i.e. tests can be performed on a single channel per band or on three channels. The call set up to the phone can either be originated by the phone or by the test set.

The Parallel Multiple Phone Test Package consists of a software and a hardware option to connect the RF ports of up to four mobile phones with the 4400 and to control the measurements.

Options for WCDMA (UMTS) and HSDPA

The WCDMA offering on the 4400 consist of two main options, the 4466 WCDMA/UMTS Non-Call Mode Option and the 4467 WCDMA/UMTS Call Mode Option. These software options are based upon the 4479 Baseband Processing Hardware.

4466 WCDMA Non-Call Mode Option

The Non-Call Mode Option, sometimes also known as asynchronous mode or non-signaling mode, offers all the functionality required to tune a WCDMA mobile phone in a production or high level service environment. It offers all the functions necessary to generate and analyze a WCDMA signal. This functionality is dedicated to the alignment and calibration of the Printed Circuit Board (PCB) of a 3G mobile phone; these two steps are necessary to guarantee that the mobile phone's radio frequency parameters are within the limits specified.

Typical tests include:

- Power measurements
- Modulation quality measurements
- Constellation display
- Code domain power measurements
- Spectrum measurements
- TX-RX sweep calibration

To tune the receiver of a 3G mobile phone the 4400 offers various signals – a Continuous Wave (CW) signal, a Frequency Modulated (FM) signal and the WCDMA-modulated signal.

There are more features available, like the power staircase measurement or the zero-span analyzer. The power staircase test has been designed for specific measurements of the power changes; the zero-span analyzer can perform the same in a more flexible way and displays power versus time, just as a spectrum analyzer does in zero-span mode. These features can be used to display nearly all signals which are generated within the frequency range of the 4400. Overall the non-call mode functionality is mostly used through remote control and in cooperation with service software controlling both the tester and the device under test.

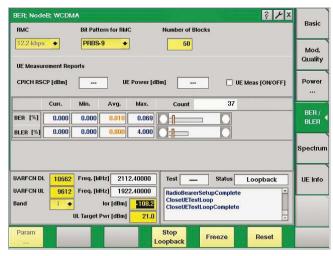


Figure 4: Receiver sensivity level estimation with BER/BLER measurement

4467 WCDMA Call Mode Option

The Call Mode Option of the 4400 is prepared for the requirements of a final test. These tests are based on 3GPP/FDD Release '99 and ETSI specification TS 134 121.

Call mode or signalling tests are necessary to test the behaviour of the WCDMA (UMTS) mobile phone in a network, closer to the reality. Therefore the 4400 acts as a Node B (WCDMA base station), supporting the necessary signalling exchange. All the relevant parameters, such as the configured downlink channels, can be configured. The 4400 supports the required call processing algorithm for call set up (mobile-terminated call, mobile-originated call) and also for loopback mode on one of the Reference Measurement Channels (RMC); these channels are specified for transmitter and receiver testing.

The 4400 Mobile Phone Tester Series provides a long list of transmitter measurements, which can be divided into modulation quality, power, code domain and spectrum measurements with additional reports from the phone. Receiver measurements are also included. Fast testing on different frequency channels is supported with the handover procedure to keep test time to a minimum.

HSPDA

High Speed Downlink Packet Access is an optimisation for UMTS/WCDMA in the Downlink.

The HSDPA testing solution for the 4400 Mobile Phone Tester Series consists of two options: the 4456 HSDPA Non-Call Mode Option and the 4455 HSDPA Call Mode Option. Each of these options requires the related WCDMA option and the 4479 Baseband Processing Hardware to be installed.

4456 HSDPA Non-Call Mode Option

The HSDPA Non-Call Mode Option provides all the necessary functionality to calibrate and align an HSDPA-capable device in production or high level service environment. For this purpose, it offers generator and analyzer functions with measurements as follows:

- Power measurements
- Modulation quality, code domain power and spectrum measurements

4455 HSDPA Call Mode Option

4455 HSDPA Call Mode Option offers the functionality to fully test an HSDPA-capable device according to 3GPP Release 5 specification TS 134 121. The 4400 simulates a radio cell with HSDPA capabilities, where the device can log onto (PS attach). Once successfully registered, an RMC-based connection can be established and HSDPA data is transmitted. Based on the connection settings, different tests can be performed such as

- Power measurements (e.g. maximum power)
- Modulation quality (e.g. peak and RMS error vector magnitude (EVM))
- Code domain power measurements (e.g. peak code domain error (PCDE))
- Receiver characteristics (e.g. maximum input level)
- Receiver performance (e.g. CQI reporting, data rate throughput/BLER)

Basic; NodeB; HSDDA Call Graph CS Attach PS Attach UE alert Call established Call established Loopback HSDPA	IMEI (SV) IMEI (SV) IMSI 001010123456789 UE Category 6 Max HS-DSCH code charast 5 Min TII Interval: 1 Modulation: QPSK & 16QAM Peak data rate [Mbps]: 3.6	Basic (Mod. Quality Power Receiver Tests Spectrum
UARFCN DL 10700 Freq. [MHz] 2140.0 UARFCN UL 9750 Freq. [MHz] 1950.0 Band 1 • Ior (JBm] UL Target Pwr (JBm) Param Speech Call Loopback	10000 SecurityModeComplete -67.6 PS AttachAccept Registration Results	UE Info

Figure 5: HSDPA basic connection menu

General data

Standard	3GPP-FDD Release 5
Symbol rate	3.84 Mcps
Bandwidth	5 MHz

RF generator

Modulation type	CW, FM, WCDMA,
	WCDMA/HSDPA

WCDMA/HSDPA signal generator

Frequency resolution	10 Hz
Output level range	1–120 to –20 dBm
Output level accuracy	0.7 dB, typ. ±0.4 dB
Output level resolution	0.1 dB
Error vector magnitude (EVM) < 5%
Channel level accuracy	±0.2 dB
Channel level resolution	0.1 dB

FM signal generator

Modulation frequency	1 to 100 kHz
Frequency deviation	250 to 1000 kHz
Deviation tolerance	±2%
Distortion tolerance	< 1%

RF analyzer

WCDMA/HSDPA power measurement

Measurement filte	r According to standard,
	3.84 MHz, RRC, α = 0.22
Power measureme	nt
Peak/mean	power, filtered/non-filtered
Level range	-60 to +35 dBm
Accuracy ±	0.4 dB for -25 to +35 dBm
±	0.7 dB for -50 to -25 dBm
	± 0.9 dB for < -50 dBm
Resolution	0.01 dB

Resolution

WCDMA/HSDPA analyzer

Modulation quality measurements		
Measurement filter	According to standard,	
	3.84 MHz, RRC, α = 0.22	
Level range	-25 dBm to +35 dBm	

Error vector magnitude

Range	Up to 30%
Accuracy	±2.5%
Resolution	0.1%

Frequency error

Range	±5 kHz
Accuracy	±5 Hz
Resolution	1 Hz

Spectrum analyzer

Frequency span	±3 MHz, ±5 MHz
Resolution bandwidth	15 kHz, 30 kHz

Adjacent channel leakage ratio

Measurement bandwidth ±5 MHz first adjacent channel, ±10 MHz second adjacent channel Dynamic range > 48 dB first adjacent channel, > 58 dB second adjacent channel 80 dB Display range Resolution 0.1 dB

Occupied bandwidth

1 to 6 MHz
±100 Hz
15 kHz

Spectrum emission mask

Measurement filter	
±2.515 to ±3.485 MHz	30 kHz Gaussian
±4 to ±12 MHz	1 MHz Gaussian
Dynamic range	
±2.515 to ±3.485 MHz	> 70 dB
±4 to ±12 MHz	> 65 dB
Resolution	0.1 dB

Non-call mode functions

WCDMA/HSDPA analyzer

Power measurements

Peak power, mean power

Spectrum measurements

Occupied bandwidth (OBW), adjacent channel power leakage ratio (ACLR), spectrum emission mask (SEM)

Modulation guality

Error vector magnitude (EVM), magnitude error, frequency error, phase error, rho, I/Q offset, I/Q imbalance, constellation display

Code domain measurements

Peak code domain error (PCDE), code domain power

Power vs. time

Zero-span analyzer

(flexible power vs. time measurements)	
Sweep time	1 to 85 ms ¹⁾
Reference leve	-23 to 36 dBm
Filter	30 kHz, 100 kHz, 4.6848 MHz

Generator

CW, FM and WCDMA signal

1) 51 ms for 4.6848 MHz filter

Call mode functions

WCDMA call processing

Supported bands	S
Band I	1920 to 1980 MHz (UL)
	2110 to 2170 MHz (DL)
Band II	1850 to 1910 MHz (UL)
	1930 to 1990 MHz (DL)
Band III	1710 to 1785 MHz (UL)
	1805 to 1880 MHz (DL)
Band IV	1710 to 1755 MHz (UL)
	2110 to 2155 MHz (DL)
Band V	824 to 849 MHz (UL)
	869 to 894 MHz (DL)
Band VI	830 to 840 MHz (UL)
	875 to 885 MHz (DL)
Band VIII	880 to 915 MHz (UL)
	925 to 960 MHz (DL)
Band IX	1749.9 to 1784.9 MHz (UL)
	1844.9 to 1879,9 MHz (DL)
Band X	1710 to 1770 MHz (UL)
	2110 to 2170 MHz (DL)

Supported procedures

Universal routing update (URA), mobile originated call, mobile terminated call, call clearing by mobile and tester, inter-frequency handover (channel change), inter-RAT handover (to GSM/GPRS/EDGE)

Reference measurement channels according to 3GPP TS 134 121

RMC 12.2, 64, 144, 384 kbps HSDPA-specific reference channels H-Set 1 QPSK with AWGN

Transmitter measurements

Peak and mean power, min and max output power, inner loop power control, open loop power control

Spectrum measurements

Occupied bandwidth (OBW), adjacent channel power leakage ratio (ACLR), spectrum emission mask (SEM)

Modulation guality measurements

Error vector magnitude (EVM), magnitude error, frequency error, phase error, rho, I/Q offset, I/Q imbalance, constellation display

Code domain measurements

Peak code domain error (PCDE), code domain power

Receiver measurements

BER/BLER measurements UE Info with UE Measurement Report Maximum throughput test (HSDPA)

Options for TD-SCDMA

TD-SCDMA (Time Division Synchronous CDMA) is a third-generation wireless communications standard for China, combining Time Division Multiplex Access (TDMA) technology with a synchronous CDMA component.

Willtek's TD-SCDMA testing solution is based on the 4400 Series Mobile Phone Tester, the 4450 TD-SCDMA Non-Call Mode Option, the 4451 TD-SCDMA Call Mode Option and the 4479 Baseband Processing Hardware.

4450 TD-SCDMA Non-Call Mode Option

The 4450 TD-SCDMA Non-Call Mode Option can be seen as a combined signal analyzer and generator in one instrument used in R&D, production and high level service environments.

The analyzer functionality provides the following features:

- Power measurements, such as channel, mean, peak, off-power measurements
- Modulation quality measurements with measurements like Error Vector Magnitude (EVM RMS), frequency, magnitude and phase error
- Constellation display
- Code domain power measurements
- Spectrum measurements

Signals such as Continuous Wave (CW), burst and TD-SCDMA together with Q-PSK modulation and various types of payload data allow a flexible tuning of TD-SCDMA handset receivers.

4451 TD-SCDMA Call Mode Option

The Call Mode Option supports the functionality required for typical tests on a TD-SCDMA mobile phone. These tests are based on the 3GPP/TDD Release '99 and ETSI specification TS 134.122 (Low Chip Rate – LCR).

The call processing is required to simulate a TD-SCDMA base station and test the proper behaviour of the TD-SCDMA mobile phone in a network. The 4400 in this way acts as a Node B (TD-SCDMA base station), supporting the necessary signalling. All the relevant parameters, such as the configured downlink channels, can be configured. The 4400 supports the basic registration procedure, as well as the required call processing for the call setup (mobile-terminated and mobile-originated) and for the test loopback mode on one of the Reference Measurement Channels (RMC); these channels are specified for

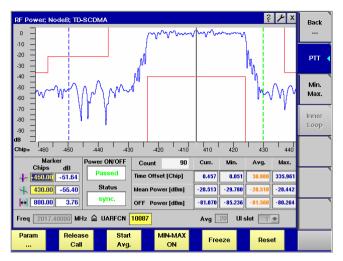


Figure 6: TD-SCDMA power measurements

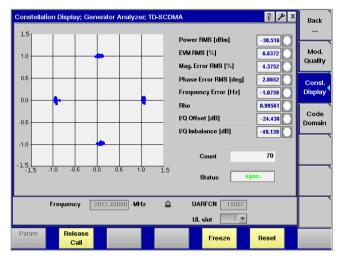


Figure 7: Constellation Display

transmitter and receiver testing.

The 4400 Mobile Phone Tester Series provides a long list of transmitter measurements, which can be divided into modulation quality, power, code domain and spectrum measurements with additional measurement reports from the mobile phone. Receiver measurements are also included and supported. In order to support fast testing on various frequency channels, handover procedures are also included – this will keep measurement time to a minimum.

General data

Standard	3GPP-TDD
Symbol rate	1.28 Mcps
Bandwidth	1.6 MHz

RF generator

Modulation type

CW, burst, TD-SCDMA downlink

TD-SCDMA signal generator

Frequency range	800 to 1000 MHz	
	1700 to 2300 MHz	
Frequency resolution	1 Hz	
Output level range	–120 to –13 dBm	
Output level accuracy	0.7 dB, typ. ±0.4 dB	
Output level resolution	0.1 dB	
Error vector magnitude	(EVM) < 5%	
Supported physical channels		
P-(CCPCH, S-CCPCH , PICH,	
	DwPCH, FPACH, DPCH	
Code channel level range	9	
off, –30 to 0 dB to absolute level		
Code channel level accur	асу	
±	0.2 dB (relative level)	
Code channel level resol	ution 0.1 dB	

RF analyzer

TD-SCDMA power measurements

Measurement filter

According to stand	dard, 1.28, RRC, $\alpha = 0.22$
Channel power, peak/mean/off power;	
filtered	power on/off mask
Frequency range	800 to 1000 MHz
	1700 to 2300 MHz
Level range	-60 to +35 dBm
Level accuracy	

 ± 0.4 dB for high power (-25 to +35 dBm) ± 0.7 dB for low power (-60 to -25 dBm) ± 0.9 dB for < -60 dBm Resolution 0.01 dB

Modulation quality measurement

Measurement filter	according to standard
	1.6 MHz, RRC, α = 0.22
Frequency range	800 to 1000 MHz
	1700 to 2300 MHz
Level range	-25 to +35 dBm

Error vector magnitude (EVM)

Range	up to 30%
Accuracy	±2.5%
Resolution	0.1%

Frequency error

Range	±10 kHz
Accuracy	±10 Hz
Resolution	1 Hz

Waveform quality

Range	0.9 to 1.0
Accuracy	±0.002
Resolution	0.0001

Spectrum

Span	±1.2 MHz, ±2.4 MHz
Resolution bandwidth	15 kHz, 30 kHz

Adjacent channel leakage power ratio (ACLR)

 $\begin{array}{c} \mbox{Measurement bandwidth} \\ \pm 1.6 \mbox{ MHz, first adjacent channel} \\ \pm 3.2 \mbox{ MHz, second adjacent channel} \\ \mbox{Dynamic range} > 48 \mbox{ dB, first adjacent channel} \\ \hline \mbox{58 dB, second adjacent channel} \\ \mbox{Display range} \qquad 80 \mbox{ dB} \\ \mbox{Resolution} \qquad 0.1 \mbox{ dB} \end{array}$

Occupied bandwidth

Range	1 MHz to 4 MHz
Accuracy	±100 kHz
Resolution	15 kHz

Spectrum emission mask

30 kHz Gaussian
1 MHz Gaussian
> 70 dB
> 65 dB
0.1 dB

Non-call mode functions

TD-SCDMA analyzer

	filtered
Power	on/off mask
Spectrum mea	asurements
	Modulation spectrum
	Occupied bandwidth (OBW)
Adjacent cha	nnel leakage power ratio (ACLR)
	Spectrum emission mask (SEM)
Modulation q	uality
EVM, f	requency error, magnitude error
phase err	or, I/Q offset, I/Q imbalance, Rho
Code domain	measurements
	Peak code domain error (PCDE)
	code domain spectrum

Generator

Signal type	CW, burst, TD-SCDMA
Modulation	None, QPSK
Downlink timesl	ots 1 to 6
Payload data	PN9, PN15, PN23, all Os, all 1s,
1010	, 1100, 11110000, 1100

Data rate

(Reference Measurement Channel – RMC) 12.2 kbps

Call mode functions

TD-SCDMA call processing

Supported bands

1900 - 1920 M	MHz (UL & DL)
2010 - 2025 M	MHz (UL & DL)
1850 - 1910 M	MHz (UL & DL)
1930 - 1990 M	MHz (UL & DL)
1910 - 1930 M	MHz (UL & DL)

Supported procedures

Registration, mobile originated call, mobile terminated call, call clearing by mobile and tester, inter-frequency handover (channel change)

Reference Measurement Channels according to 3GPP TS 34.122

RMC 12.2 kbps (single code and multicode) RMC 64 kbps

Transmitter measurements

Peak and mean power, min and max power, inner loop power control, open loop power control, Transmit ON/OFF Time mask

Spectrum measurements

Occupied bandwidth (OBW), adjacent channel power leakage ratio (ACLR), spectrum emission mask (SEM)

Modulation quality measurements

Error vector magnitude (EVM), magnitude error, frequency error, phase error, rho, I/Q offset, I/Q imbalance, constellation display

Code domain measurements

Peak code domain error (PCDE), code spectrum

Receiver measurements

BER/BLER measurements UE Info with UE Measurement Report (e.g. UE power, P-CCPCH RSCP, path loss)

Options for CDMA2000

The CDMA2000 system options for the 4400 Series enable users in R&D, manufacturing and service to test subscriber terminals which are based on the cdmaOne and CDMA2000 technologies. The 4447 CDMA2000 1xRTT Non-Call Mode Option supports asynchronous measurements and the 4448 CDMA2000 1xRTT Call Mode Option supports synchronous measurements, so the combination of the both allow the user to perform alignment as well as functional testing of terminals.

Supported features are:

- cdmaOne and CDMA2000 call processing including registration, MS/BS originated call, MS/BS termination, handovers
- Fast power measurements including Min/Max power, open loop power, gated power, closed loop power and access probe power
- Modulation quality measurements including waveform quality and code domain measurements
- Receiver performance testing including receiver sensitivity and dynamic range using the FER feature
- AM generation for calibration of terminals supporting ZIF (zero intermediate frequency) based chipsets

The CDMA2000 System Option supports the following bands: 0-US Cellular, 1-US PCS, 2-TACS, 3-JTACS, 4-Korean PCS, 5-NMT-450, 6-IMT 2000, 8-1800 MHz, and 9-900 MHz.

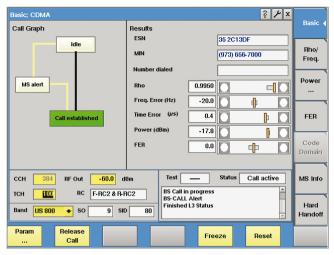


Figure 8: CDMA2000 basic menu

Band US 800 SO Param Belease	2 SID 80 BS-CALL Alert 		Hard Handoff					
CCH 384 RF Out -60.0 dBm Test — Status Call active TCH E00 BC F-RC3 & R-RC3 Access Probe-13.86			MS Info					
VQ Imbalance (dB)	-48.9	-63.8	-48.8	-40.7		= [}		Domain
Carrier Feedthrough (dBc)	-36.1	-37.9	-36.4	-34.7				Code Domain
RMS Phase Error (deg)	3.25	3.14	3.32	3.52				
RMS Mag. Error (%)	3.8	3.8	4.4	5.9				FER
RMS EVM (%)	6.9	6.8	7.3	8.2				
Time Error (µs)	0.005	0.005	0.005	0.005		0		Power
Frequency Error (Hz)	1	-4	1	8		0		Freq.
Rho	0.9955	0.9935	0.9949	0.9956		[Rho/
Results	Curr.	Min.	Avg.	Max.	Count	9		Basic
Rho / Frequency; CDMA							? / X	Basic

Figure 9: Modulation quality measurement

AMPS call mode functions

AMPS call processing

Supported procedures	Handoff CDMA to
analog,	

handoff analog to analog, power level change, call clearing by MS or 4400

AMPS transmitter measurements

power, frequency error, SAT & ST frequency and deviation, Audio deviation, SINAD – requires Audio Option

AMPS receiver measurements

receiver sensitivity with SINAD, (requires Audio Option)

RF generator

CDMA generator

Level range (AWGN Off)

Level lange (/ work on)	
-	-120 dBm to –15 dBm
Level range (AWGN On)	
-	-120 dBm to -27 dBm
Level accuracy	
(AWGN Off, -110 dBm t	:o –15 dBm)
4403	±1.4 dB
4405	±0.9 dB, typ. ±0.6 dB
Level resolution	0.1 dB
Waveform quality (rho)	> 0.97, typ. > 0.99
Carrier feedthrough	< -35 dBc
Code channel level accu	racy ±0.25 dB

AWGN generator

AWGN bandwidth > 1.8 MHz AWGN, level range relative to CDMA signal +5 to -10 dB AWGN level accuracy (relative to signal) ±0.5 dB

Code channels

Sector A

Sector A	
F-PICH, F-SYNC, F	-FCH -5 dB to -32 dB
F-QPCH	+2 to -5 dB relative to Pilot
F-OCNS	level calculated by 4400
Sector B	
F-PICH, F-FCH	-5 dB to -32 dB
F-OCNS	level calculated by 4400

AMPS generator

-	
Level range	–120 dBm to –15 dBm
Level accuracy 440	3 ±1.4 dB
Level accuracy 440	5 ±0.9 dB, typ. ±0.6 dB
Level resolution	0.1 dB
Modulation	FM or none
FM modulation type	es
Mod A 59	970 Hz, 6000 Hz, 6030 Hz
Mod B	1 kHz or off

RF analyzer

CDMA/AMPS power meter

CDMA level range	-70 dBm to +36 dBm
AMPS level range	-40 dBm to +36 dBm
Level resolution	0.1 dB
Level accuracy 4403	±1.2 dB
Level accuracy 4405	
(-10 dBm to +36 dBm)	±0.5 dB
(-60 dBm to -10 dBm)	±0.6 dB
(-70 dBm to -60 dBm)	±0.7 dB

Modulation analyzer for CDMA2000

-	
Level range	-30 dBm to +36 dBm
Frequency error range	±1 kHz
Resolution	1 Hz
Accuracy (relative to fr	eq. base) ±10 Hz
Waveform quality	
Range	0.9 to 1.0
Accuracy	±0.003
Time offset	
Range	±5 μs
Accuracy	±100 ns
Code domain measuren	nents (1XRTT chan-
nels)	
Code channels	W_0^{16} to W_{15}^{16}
Code power range	0 to 40 dBc
(r	elative to total power)
Code power resolution	0.1 dB
Code power accuracy	±0.1 dB
Number of code channe	els 1 to 6
Timing range	0 to 200 ns
Timing resolution	1 ns
Timing accuracy	±2 ns
Code domain power rar	nge ±3.75 dB
(re	elative to reverse pilot)
Code domain power res	olution 0.1 dB
Code domain power acc	turacy ±0.1 dB

Modulation spectrum

Display range	80 dB
1 / 0	5 kHz, 10 kHz, 30 kHz
Span (selectable)	±2.5 MHz, ±1.25 MHz,
	±500 kHz

ACPM

Display range	80 dB	
Frequencies acco	ording to IS-98D up to	
2.5 MHz from centre frequency		
Measurements	spectrum due to modulation	

Modulation analyzer for AMPS

Level range	-15 dBm to +36 dBm
Frequency error range	±5 kHz
Resolution	1 Hz
Accuracy (relative to fr	eq. base) ±20 Hz
Deviation range	0 to 30 kHz
Deviation resolution	1 Hz
Deviation accuracy	±5%
Audio deviation filter	300 kHz
SAT frequency range	±5 Hz
ST frequency range	±5 Hz
SAT & ST frequency res	olution 1 Hz
SAT & ST frequency acc	uracy ±0.1 Hz

Non-call mode functions

CDMA generator

Signal type	continuous
Modulation	none, BPSK/QPSK
User-definable	e parameters for CDMA cell
simulation	SID, NID, MCC, MNC, PN offset

CDMA analyzer

Supported signal types	OQPSK, HPSK
Supported transmitter measur	ements
powe	er, gated power,
waveform quali	ty, code domain

AMPS generator

Signal types	continuous
Modulation	none, FM

AMPS analyzer

Support signal types	FM
Supported transmitter measurements	
power, frequency e	error,
SAT & ST frequency and devia	tion,
Audio devia	tion,
SINAD – requires Audio Op	otion

Call mode functions

CDMA2000 call processing

Supported CDMA2000 bands band 0 – US cellular (ch 1 to 1023) band 1 – PCS band (ch 1 to 1199) band 2 – TACS band (ch 1-1000, 1329-2047) band 3 – JTACS band band 4 - Korean PCS (ch 1 to 599) band 5 – NMT-450 band 6 – IMT-2000 (ch 1 to 1199) band 8 – 1800 MHz (ch 1 to 1499) band 9 – 900 MHz (ch 1 to 699) Supported procedures registrations, mobile-originated call, mobile-terminated call, intracell handover, cross-band handover, call clearing by MS, call clearing by 4400 Special functions call state diagram MS information display

Mobile ID Number (MIN), Equipment Serial Number (ESN), IMSI (class 0 and 1), type, slot class, slot index, power class, transmit mode, digits dialed Common control channel parameters SID, NID, MCC, MNC, PN Offset Access channel parameters nominal power, initial power, power step, number steps, request sequences, response sequences, timeout, preamble length Paging rate full Radio configuration combinations F-RC1/R-RC1, F-RC2/R-RC2, F-RC3/R-RC3, F-RC4/R-RC3, F-RC5/R-RC4 Service options 1 – 9.6 kbps voice, 2 – 9.6 kbps loopback, 3 - EVRC voice, 9 - 14.4 kbps loopback, 17 - 14.4 kbps voice, 55 - RC1, RC2, RC3, RC4, RC5 loopback, 32768 - 14.4 kbps voice Reverse link power control modes alternating, all up, all down, active Fundamental channel parameters walsh code, data rate, pattern (PN15, voice loop back or canned), voice loopback delay Fundamental channel data rates - forward RC1 - 1.2, 2.4, 4.8, 9.6 kbps

RC2, RC5 - 1.8, 3.6, 7.2, 14.4 kbps RC3, RC4 - 1.5, 2.7, 4.8, 9.6 kbps Fundamental channel data rates – reverse

RC1 - 1.2, 2.4, 4.8, 9.6 kbps RC2,RC4 - 1.8, 3.6, 7.2, 14.4 kbps RC3 - 1.5, 2.7, 4.8, 9.6 kbps

CDMA transmitter measurements

Power measurements

minimum/maximum RF power, open loop power (level and timing), gated output power, access probe power, closed loop power (min./max./range only), stand-by power

Modulation quality measurements rho, frequency error, rms vector error, time offset, amplitude imbalance, code domain power (graphical and data), code channel time offset, code channel phase

CDMA2000 receiver measurements

Receiver performance sensitivity, dynamic range (frame error rate) Demodulator performance

demodulation of forward traffic with AWGN Mobile reported FER, pilot strength

Options for 1xEV-DO

The 1xEV-DO offering on the 4400 Mobile Phone Tester Series consist of two main options, the 4452 1xEV-DO Non-Call Mode Option and the 4453 1xEV-DO Call Mode Option.

These software options are based upon the 4479 Baseband Processing Hardware.

4452 1xEV-DO Non-Call Mode Option

The Non-Call Mode Option, sometimes also known as asynchronous mode or non-signaling mode, offers all the functionality required to tune a 1xEV-DO Rev 0 or Rev A mobile phone in a production or high level service environment. It provides all the functions required to analyze a 1xEV-DO signal. This functionality is dedicated to the alignment and calibration of the Printed Circuit Board (PCB) of a 1xEV-DO mobile terminal; these two steps are necessary to guarantee that the mobile terminal's radio frequency parameters are within the limits specified.

Typical tests include:

- Power measurements
- · Modulation quality measurements
- Code domain power measurements
- Spectrum measurements

Overall the non-call mode functionality is typically used through remote control and in cooperation with service software controlling both the tester and the device under test.

4453 1xEV-DO Call Mode Option

The 4453 1xEV-DO Call Mode Option enables users to perform a functional test on a 1xEV-DO Revision 0 or Revision A mobile terminal. The functional test consists of establishing a connection to the terminal in a similar manner as a connection with a live network. Once a connection is establish, the appropriate RF transmitter and receiver measurements may be performed.

The Call Mode Option allows the user to setup the forward link signaling parameters and traffic channel parameters, thus allowing the user to simulate their specific network. Once the signaling parameters are setup the user may perform one of the following signaling procedures:

- AT Session Open
- AT & AN Connection

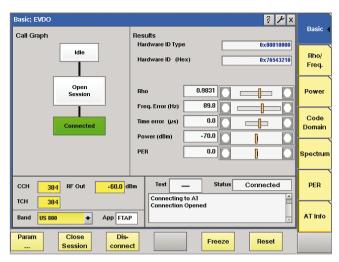


Figure 8: EVDO basic menu with Call State diagram

Rho / Frequency; EVDO						? 🗡 X	
Results	Curr.	Min.	Avg.	Max.	Count	15	Basic
Rho	0.9767	0.9531	0.0824	0.9751			Rho/
Freq. Error (Hz)	-100	- 295	-44	212			Freq.
Time Error (µs)	0	0	0	0			Power
RMS EVM (%)	12.3	7.8	11.4	12.5			Power
RMS Mag. Error (%)	18.9	17.4	18.6	20.4		- 0	Code
RMS Phase Error (deg)	4.3	2.3	3.1	7.8			Domain
Carrier Feedthrough (dBc)	-44.8	-44.5	-47.0	-49.5			Spectrum
I/Q Imbalance (dB)	-48.2	-48.2	-49.9	-53.6			
CCH 384 RF Out -60.0 dBm Test - Status Connected				PER			
TCH 384 Connection Opened Handoff Complete							
Band US 800 App RTAP AT Info			AT Info				
Param Close Dis- connect Freeze Reset							

Figure 9: Overview of the transmitter quality parameters

- AT & AN Release
- AT & AN Session Close
- Handover

Once the terminal is in a connection state, an array of transmitter and receiver test may be performed. The transmitter test consist of: minimum/maximum RF power, access probe power, closed loop power (min./max./range only), stand-by power, modulation quality measurements including rho, frequency error, rms vector error, time offset, amplitude imbalance and code domain error. The receiver performance may be verified by utilizing the FTAP/RTAP applications to test sensitivity and dynamic range via a packet error rate measurement.

Specifications

RF generator

Level range	-120 dB	m to –15 dBm
Level resolution		0.1 dB
Level accuracy (-	-110 dBm to –	-15 dBm)
		±0.7 dB
typ.		±0.4 dB
Waveform quality	/ (rho)	> 0.97
typ.		> 0.99
Carrier feedthroug	gh	<-35 dBc
Code channels	F-PICH, F-MA	C, F-CCH, F-TCH

RF analyzer

Power meter

EVDO level range	-60 dBm to +35 dBm
Level resolution	0.1 dB
Level accuracy	
-25 dBm to +35 dBm	±0.4 dB
-60 dBm to -25 dBm	±0.7 dB

Modulation quality analyzer

Level range	-25 dBm to +35 dBm
Frequency error range	±1 kHz
Resolution	1 Hz
Accuracy (relative to fr	eq. base) ±10 Hz

Waveform quality

Range	0.9 to 1.0
Accuracy	±0.003
Resolution	0.001

Error vector magnitude

Range	Up to 30%
Accuracy	±2.5%
Resolution	0.1%

Time offset

Range	±5 μs
Accuracy	±100 ns
Resolution	100 ns

Code domain error measurements

Code power resolution	0.1 dB
Code power accuracy	±0.1 dB

Spectrum analyzer

Display range	80 dB
Resolution bandwidth	15 kHz, 30 kHz
Span (selectable)	±2.5 MHz
	±500 kHz

ACPM

Display range	80 dB
Frequencies acco	ording to IS-98D
up to 2	.5 MHz from centre frequency
Measurements	Spectrum due to modulation

Non-call mode functions

Measurements power measurements modulation quality measurements rho frequency error rms vector error amplitude imbalance code domain power modulation spectrum

Call mode functions

Supported revisions F	Rev 0, Rev A
-----------------------	--------------

Supported bands

band 0 – US cellular (ch 1 to 1023) band 1 – PCS band (ch 1 to 1199) band 2 – TACS band (ch 1-1000, 1329-2047) band 3 – JTACS band (ch 1-799, 801-1039, 1041-1199, 1201-1600) band 4 – Korean PCS (ch 1 to 599) band 5 – NMT-450 (ch 1-300, 1039-1473, 1792-2016) band 6 – IMT-2000 (ch 1 to 1199) band 8 – 1800 MHz (ch 1 to 1499) band 9 – 900 MHz (ch 1 to 699)

Supported procedures

AT Session Open AT & AN Connection AT & AN Release AT & AN Session Close Handover

Terminal information

Hardware ID Hardware ID type Session seed UATI 024 UATI color code

Access parameters

Open loop adjust (0 to 255 dB) Preamble length (0 to 7 frames) Probe initial adjust (-15 to +16 dB) Probe num step (1 to 15) Probe power step (0 to 7.5 dB) Probe sequence max (1 to 15)

Reverse channel gain parameters

Ack channel (-3 to +6 dB)DRC channel (-9 to +6 dB)Data offset nominal (-3.5 to 4.0 dB) Data offset rate (for various rates) General parameters Control channel number Total RF power PN offset (0 to 511) Call parameters Physical Layer Subtype Application FTAP/FETAP rate RTAP/RETAP rate ACK channel bit fixed mode attrib AT directed packets Reverse closed loop power control AT max power MAC index

Transmitter measurements

power measurements minimum/maximum RF power modulation quality measurements rho frequency error rms vector error time offset amplitude imbalance code domain power

Receiver measurements

receiver performance sensitivity dynamic range (packet error rate)

Options for GSM, GPRS and EDGE

The 4400 Mobile Phone Tester Series supports GSM and its enhancements GPRS and EDGE with different basic options: the GSM non-call mode and call mode options, the GPRS noncall mode and call mode options, and the EDGE non-call mode and call mode options.

GSM system options

Worldwide the GSM standard is being applied in four different frequency bands, all of which are supported by the GSM system options.

The 4457 GSM Call Mode Option offers a signalling mode in which the 4400 is able to emit a signal similar to that of a GSM base station. Various signalling parameters can be adjusted to test a GSM mobile phone under different conditions.

The parameter menu allows signalling parameters to be easily changed. From the GSM cell parameters, across the definition of SMS message class, to the call set up procedure details, a lot of parameters are accessible in the 4400. A range of measurements are supported to test frequency and phase error, power, spectrum, and various receiver quality parameters. The call mode option includes a generic test script to run tests automatically, without user intervention. This test script consists of a final test of a GSM mobile phone operating in one or several of the GSM frequency bands, which are GSM 850 (U.S. cellular band), GSM 900, GSM 1800 and GSM 1900 (U.S. PCS band).

The generator/analyzer mode of the 4458 GSM Non-Call Mode Option provides basic signal generation capabilities as well as frequency and phase, burst (power) and spectrum measurements. This functionality is not limited to GSM channels but available for the whole frequency range supported by the 4400.

GPRS system options

GPRS (General Packet Radio Service) adds higher data rate capabilities to GSM by combining a packet data protocol with bundling of multiple time slots. The 4462 GPRS Call Mode Option allows testing of the packet data protocol capability as well as the multislot transmit and receive quality during a connection. Tests without the connection setup can be done with the 4454 GPRS Non-Call Mode Option.

Users who need to test both GSM and GPRS in call mode and non-call mode, can also use the 4463 GSM/GPRS System

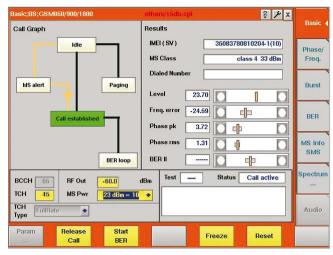


Figure 10: GSM Basic menu

Level <u>-60.0</u> dBm	zer, Tool others/16db.cpl ? ≯ X	RF Gen.∢ Analyzer Phase/ Freq.
Signal type burst	Timeslot 0	Analyzer Burst
Modulation		Align- ment
		Spectrum
Param 	Gen. Off	

Figure 11: RF generator/analyzer mode

Option combining the capabilities of all the four system options.

EDGE system options

A further increase in data throughput is achieved with EDGE (Enhanced Data rates for the Global Evolution), also called Enhanced GPRS. EGPRS introduces a higher modulation format (8-PSK) which requires new tests and measurements.

The modulation quality for EDGE-enabled mobile phones is expressed in Error Vector Magnitude (EVM), origin offset and I/Q imbalance.

RF generator

GSM/GPRS/EDGE system options

RF generator

Level range	–120 dBm to –10 dBm
Level accuracy (-110	dBm to –10 dBm)
4405	0.7 dB, typ. 0.3 dB
4403	0.9 dB, typ. 0.4 dB
Level resolution	0.1 dB
Phase error rms	2.3°, typ. 1.1°

RF analyzer

Peak power level range -10 dB	m to +36 dBm
Dynamic range	72 dB
Usable down to	-30 dBm

Phase and frequency measurements

Marker functions 2 markers, difference indication
· · · · ·
Vertical display range
±2°, ±5°, ±10°, ±20°, ±50°
Horizontal display range 150 bit periods
Frequency error
Display current/average/min./max.
Range ±100 kHz
Resolution 1 Hz
Accuracy at 800 MHz to 1000 MHz
within ± 10 kHz error 15 Hz + freq. base
within ±100 kHz error 20 Hz + freq. base
Accuracy at 1700 MHz to 2000 MHz
within ±10 kHz error 25 Hz + freq. base
within ±100 kHz error 30 Hz + freq. base
Phase error rms
Display current/average/min./max.
Range 0° to 15°
Resolution 0.1°
Accuracy 0.5°
typ. 0.3°
Phase error peak
Display current/average/min./max.
Range 0° to 45°
Resolution 0.1°
Accuracy
1° to 15° error 3.2°
15° to 25° error 4.2°

8-PSK (EDGE) measurements (EDGE system options)

Level range	-25 dBm to +36 dBm
Frequency error	
Range	±10 kHz
Resolution	1 Hz
Accuracy	same as GSM specification
RMS EVM	
Display	current/average/min./max.
Range	0 to 50%
Resolution	0.1%
Accuracy	<1.0%
Peak EVM	
Display	current/average/min./max.
Range	0 to 75%
Resolution	0.1%
Accuracy	<3%

95th percentile	
Display	current/average/min./max.
Range	0 to 50%
Resolution	0.01%
Accuracy	<1.5%
Origin offset	
Display	current/average/min./max.
Range	0 to 50%
Resolution	0.1%
Accuracy	±0.5 dB
I/Q imbalance	
Display	current/average/min./max.
Range	0 to 50%
Resolution	0.1%
Accuracy	±0.5 dB

Burst measurements

Peak level accuracy		
4405	0.37 dB ¹⁾	
	typ. 0.15 dB	
4403	0.8 dB	
Level repetition		
4405	0.01 dB	
4403	0.03 dB	
Level resolution	0.01 dB	
Relative accuracy of 440	05 1 dB at –60 dBc	
	3 dB at –72 dBc	
Graphical display		
Measurement	power vs. time	
Marker functions		
2 markers, difference indication		
Power vs. time display modes Full burst,		
	edges, flat part	
Corner points		
8 measurement points on the burst		
Selectable range	-10 bits to +160 bits	
Accuracy see relative accuracy		
Resolution 0.1 dB		
Timing advance and timing error measure-		
ment		
Setting range	0 to 63 bit periods	
Measurement resolution		
Measurement range	± half a time slot	
(relative to 4400 timing	g)	

1) if RX signal > -32 dBm and TX signal > 10 dBm

Modulation spectrum

Graphical display	power vs. frequency
Display range	80 dB
Resolution bandwidth	10 kHz, 30 kHz
Span (selectable)	±1.8 MHz
	±500 kHz
	±200 kHz
Marker functions	

2 markers,	difference indication
Statistical functions	current, average

ACPM (ORFS) option

Graphical display	bar chart,	
	power vs. frequency	
Display range	80 dB	
Frequencies according to ETSI GSM 11.10		
up to 1.8 MHz from centre frequency		
Measurements Spectru	IM due to modulation	
Spectrum due to switching transients		
· · · · · · · · · · · · · · · · · · ·		

Non-call mode functions

Asynchronous RF generator

Carrier frequency selection		by frequency
		or channel number
Signal types		continuous, burst
Modulation	none, GN	MSK, AM (optional)
Training sequence		0 to 7 or none
Burst contents		fixed bit patterns,
	PRBS (PM	N-9, PN-15, PN-23)

Asynchronous RF generator (additional specifications for GPRS Non-Call System Option)

Signal type continuous, burst, multislot		
Selectable channel combinations		
raw GMSK signal		
PDTCH (channel comb. 13)		
BCH + PDTCH (channel comb. 5 on time slot 0,		
channel comb. 13 on other time slots)		
PDTCH contents		
RLC/MAC header + data payload		
Multislot PDTCH operation		
1 time slot generated and duplicated		
PDTCH data payload		
PN-9, PN-15, PN-23, 1010		
Multislot power level		
individually selectable for each time slot		
Asynchronous RF analyzer		
Asynchronous RF analyzerCarrier frequency selectionby frequency		
• •		
Carrier frequency selection by frequency		
Carrier frequency selection by frequency or channel number		
Carrier frequency selection by frequency or channel number Supported signal type		
Carrier frequency selection by frequency or channel number Supported signal type GMSK-modulated burst signal		
Carrier frequency selection by frequency or channel number Supported signal type GMSK-modulated burst signal GMSK-modulated continuous signal		
Carrier frequency selection by frequency or channel number Supported signal type GMSK-modulated burst signal GMSK-modulated continuous signal Time synchronisation of MS with 4400 not required RF power conditions > -20 dBm		
Carrier frequency selection by frequency or channel number Supported signal type GMSK-modulated burst signal GMSK-modulated continuous signal Time synchronisation of MS with 4400 not required		
Carrier frequency selection by frequency or channel number Supported signal type GMSK-modulated burst signal GMSK-modulated continuous signal Time synchronisation of MS with 4400 not required RF power conditions > -20 dBm		
Carrier frequency selection by frequency or channel number Supported signal type GMSK-modulated burst signal GMSK-modulated continuous signal Time synchronisation of MS with 4400 not required RF power conditions > -20 dBm Supported transmitter measurements		
Carrier frequency selection by frequency or channel number Supported signal type GMSK-modulated burst signal GMSK-modulated continuous signal Time synchronisation of MS with 4400 not required RF power conditions > -20 dBm Supported transmitter measurements peak power		
Carrier frequency selection by frequency or channel number Supported signal type GMSK-modulated burst signal GMSK-modulated continuous signal Time synchronisation of MS with 4400 not required RF power conditions > -20 dBm Supported transmitter measurements peak power burst power (full range)		
Carrier frequency selection by frequency or channel number Supported signal type GMSK-modulated burst signal GMSK-modulated continuous signal Time synchronisation of MS with 4400 not required RF power conditions > -20 dBm Supported transmitter measurements peak power burst power (full range) corner points		

Asynchronous RF analyzer (additional specifications for GPRS Non-Call Mode Option)

In multislot mode, the specified measurement accuracy applies to the time slot with the highest power level.

Maximum number of time slots

up to 4 adjacent time slots Supported transmitter measurement

same as for GSM, displayed results for selectable time slot, results via SCPI for one selectable slot or for all time slots

Asynchronous RF analyzer (additional specifications for EDGE Non-Call Mode Option)

In multislot mode, the specified measurement accuracy applies to the time slot with the highest power level.

Maximum number of time slots

up to 4 adjacent time slots Supported transmitter measurements frequency error, RMS EVM, peak EVM 95th percentile, origin offset, I/Q imbalance displayed results for selectable time slot, results via SCPI for 1 selectable of for all time slots

Call mode functions

Supported bands GSM 850 (channels 128 to 251) P-GSM (channels 1 to 124) E-GSM (channels 975 to 1023, 0 to 124) R-GSM (channels 955 to 1023, 0 to 124) GSM 1800 (channels 512 to 885)

GSM 1900 (channels 512 to 810)

GSM call processing

Supported procedures	location update mobile-originated call
	mobile-terminated call
	intracell handover
cross-	band intracell handover
	call clearing by MS
	call clearing by 4400
open loop	, closed loop procedures
(early or late assignment
SM	S to mobile (idle mode)
SM	S to mobile (on TCH/FS)
SMS f	rom mobile (idle mode)
Special functions	call state diagram
	paging test
	reduced signalling
TCH slot	selectable, range 2 to 6

GPRS call processing

Time slot selection

automatic, according to multislot class Supported procedures GPRS attach/detach routing area update downlink TBF establishment uplink TBF establishment (using ETSI-defined GPRS test mode command) reduced signalling Uplink data mode according to GSM 04.14 test mode a) (without data loopback in the mobile) Uplink power control method closed loop

EDGE call processing

Time slot selection automatic, according to multislot class Supported procedures EDGE attach/detach uplink TBF establishment ETSI test mode A only

GPRS transmitter measurements

The measurement accuracy specified for the base unit applies to the time slot with the highest power level.

Supported number of time slots

transmitter measurements: 1 through 4 RF power conditions

at least 1 time slot at > -20 dBm max. adjacent slot power difference: 30 dB Power measurements

> peak power for selectable time slot min., max., average, current values

8 corner points for selectable time slot power vs. time for selectable no. of time slots Frequency/phase error measurements

measurements for selectable time slot min., max., average, current values Spectrum measurements

modulation spectrum (for selectable slot) spectrum due to modulation (selectable slot)

spectrum due to switching transients

EDGE transmitter measurements

The measurement accuracy specified for the base unit applies to the time slot with the highest power level.

Supported number of time slots

transmitter measurements: 1 through 4 RF power conditions

at least 1 time slot at > -20 dBm max. adjacent slot power difference: 30 dB Power measurements

peak power for selectable time slot min., max., average, current values 8 corner points for selectable time slot power vs. time for selectable no. of time slots

Modulation quality measurements frequency errorr, RMS EVM, peak EVM 95th percentile, origin offset, I/Q imbalance

min., max., average, current values Spectrum measurements

modulation spectrum (for selectable slot) spectrum due to modulation (selectable slot) spectrum due to switching transients

GSM receiver measurements

Supported measurements

Bit Error Rate (BER) Residual Bit Error Rate (RBER) Fast Bit Error Rate (FBER, C loop) Frame Erasure Rate (FER) Selectable patterns PRBS (PN-9, PN-15, PN23) Displayed results current, average, min., max. Number of samples BER 1000 to 10⁶ bits RBER 10 to 10⁶ bits Fast BER 100 to 10⁶ bits Supported channels TCH/FS, TCH/FS

GPRS receiver measurements

Displayed results

minimum, maximum, average BLER/BER		
Coding scheme	CS-1	
Data PR	BS (PN-9, PN-15, PN-23)	
BLER-BCS measureme	nt	
Number of time slots	up to 4	
Concurrent TX tests	no	
Number of blocks	10 to 999	
BLER-USF measurement		
Number of time slots	up to 4	
Concurrent TX tests	yes, up to 4 time slots	
Number of blocks	10 to 999	

EDGE receiver measurements

Displayed results

minimum, maximum, average BLER		
Coding scheme	CS-1	
BLER-USF measurement		
Number of time slots	up to 4	
Concurrent TX tests	yes, up to 4 time slots	
Number of blocks	10 to 999	

TCH loopback in the 4400

Speech loopbackfull rate, enhanced full rateData loopback9.6 kbit/s, transparent data14.4 kbit/s, transparent data

4473 MS Power Supply Option

In production lines and service centres, mobile phone testing is usually conducted using an external power supply. Now, Willtek helps mobile manufacturers and service factories optimise their workspace, instrument control and budget by integrating the power supply into the Willtek 4400 Series.

Willtek's MS Power Supply Option enhances the functionality of the 4400 Mobile Phone Tester Series by enabling engineers to eliminate the external power supply. With this easy-to-use add-on, the revolutionary 4400 supplies the mobile with DC power and tests RF and audio, all from one instrument.

The option was developed in consultation with mobile phone manufacturers and service centres with the aim of improving mobile phone testing processes and environments.

This innovative testing option provides a number of benefits:

- Easier programming The option employs remote control and RAPID! integration based on SCPI and 4400 standards.
- Streamlined troubleshooting Quick separation of handset and power supply problems ensures faster problem resolution.
- Return on investment Multiple functionality saves buying additional stand-alone equipment.
- Cost reduction This easy-to-use option reduces training costs over time.
- Space saving No additional external power supply is necessary, saving production and service space.
- Lifelike battery substitution

The option eliminates the need to use regular mains supplies for testing in mobile phone production lines and repair loops. It replaces the battery while providing similar voltage characteristics.

Minimises space and cost

The MS Power Supply Option not only reduces installation and maintenance costs but also saves money over time by reducing the number of devices manufacturers and service centres need to hold.

The option's simple-to-interpret graphical user interface, which reduces both the need for training and the time taken on each test, further enhances the cost savings.

- Multiple, simultaneous testing capabilities
 The MS Power Supply Option can support GPRS applications because it is able to feed currents for the transmission of at least two time slots per frame. The number of time slots is limited only by the current level in transmit mode.
- One-box solution

The MS Power Supply Option is shipped with a one-meter cable, designed to plug simply and easily into the power supply socket on the front panel of your 4400. The openended termination on this cable provides free adaptation into an existing test system.

Built-in protections

Willtek guards against accidental short-circuits by the addition of a positive temperature coefficient (PTC) resistor in the MS Power Supply Option. It is tripped if too much current flows through.

Specifications

Output voltage

Range	0 to 10 V
Resolution	50 mV
Accuracy (with constant current)	±20 mV
Maximum output current	
Continuous, < 4 V	1 A
Continuous, ≥ 4 V	0.25 A
Peak, < 1 ms, < 4 V	4 A
Peak, $< 1 \text{ ms}, \ge 4 \text{ V}$	2 A
Ripple noise (peak-to-peak)	100 mV/A
Proof against permanent short-circuit	

Scope of supply

A power supply connection cable of one meter length with open ends for free adaptation according to user needs is delivered with the option.

4474 MS Current Measurement Option

In specific test stations at manufacturing lines and repair stations, measurement of the current from the battery is a "must" in order to identify any failure on the PCB (Printed Circuit Board). Quality assurance measures the current in order to characterise standby and talk times.

For this range of applications the 4400 plug-in option "MS Current Measurement" substitutes an external current meter and measures power and current, which the mobile drains from the battery. The user can choose between a numerical measurement and a unique graphical representation of the current versus time measurements. The current changes dynamically as the mobile's power amplifier generates the RF bursts.

In addition the option provides a statistical evaluation for minimum, maximum, average and peak value regarding the selected duration time.

The duration of the graphical representation is 4.615 ms which enables the user to analyse a complete GSM TDMA frame.

The 4474 MS Current Measurement Option is an extension of the 4473 MS Power Supply Option. To connect the 4400 with the mobile, a power supply cable is delivered with the option. An open-ended termination on this cable provides free adaptation into an existing test system.

Both options extend the test application area of the 4400. The 4400 is now able to supply the mobile under test, measures RF and audio quality and the power consumption with one test instrument.

Benefits in brief:

- Integrated current meter, e.g. to identify short-circuit situations, eases handling for the user
- The 4400 user can test RF, audio and power consumption with one test instrument
- No additional external current meter necessary, this saves space in test systems
- Power, peak current and average current measurements possible
- Easy-to-read numerical measurement display
- Current vs. time measurements for the analysis of burst current characteristics with selectable resolutions
- Statistical evaluation and overload detection
- Battery replacement

Specifications

Measurement

Range	0 to 400 mA or 0 to 4 A
Resolution	
at 400 mA	0.1 mA
at 4 A	1 mA
Accuracy	2%
Offset	±5 mA
Output voltage range	0 to 10 V
Recording	
Duration	4.615 ms (1 TDMA frame)
Resolution	960 points
Sample rate	192,000 samples/s

Connection cable

A 0.5 meter long power supply connection cable with open ends for free adaptation of user needs is delivered with the option.

Ordering details

Willtek 4403 Mobile Phone Tester	M 101 105
Willtek 4405 Mobile Phone Tester	M 101 104

System options

4445 GSM/GPRS Call Mode Option	M 897 297
4446 GSM/GPRS Non-Call Mode Option	M 897 298
4447 CDMA2000 1xRTT Non-Call Mode Option	M 897 299
4448 CDMA2000 1xRTT Call Mode Option	M 897 300
4449 EDGE Non-Call Mode Option	M 897 301
4450 TD-SCDMA Non-Call Mode Option	M 897 255
4451 TD-SCDMA Call Mode Option	M 897 256
4452 1xEV-DO Non-Call Mode Option	M 897 287
4453 1xEV-DO Call Mode Option	M 897 288
4454 GPRS Non-Call Mode Option	M 897 302
4455 HSDPA Call Mode Option	M 897 304
4456 HSDPA Non-Call Mode Option	M 897 303
4457 GSM Call Mode Option	M 897 305
4458 GSM Non-Call Mode Option	M 897 306
4460 GSM/GPRS/EDGE Hardware Option	M 248 710
4462 GPRS Call Mode Option	M 897 307
4463 GSM/GPRS System Option	M 248 712
4464 CDMA2000 1xRTT Hardware Option	M 248 711
4466 WCDMA/UMTS Non-Call Mode Option	M 897 248
4467 WCDMA/UMTS Call Mode Option	M 897 249
4468 EDGE Call Mode Option	M 897 308
4479 Baseband Processing Hardware	M 248 690
7312 Lector Enhanced	M 897 310
7315 Scriptor	M 897 311

General options

4473 MS Power Supply Option	M 248 355
4474 MS Current Measurement Option	M 248 356
4477 OCXO	M 214 028

GSM options

1103 USIM and GSM Test SIM card	M 860 164
4470 Audio Option	M 248 360
4471 Basic Codec Option	M 248 364
4472 Codec Extension Option	M 897 156
4475 ACPM (ORFS) Option	M 897 163
4480 RAPID! GSM Service Tests	M 897 160
4481 AM Signal Generator Option	M 897 165
4485 RAPID! GSM/EGDE/WCDMA	
Service Software	M 897 276
4487 RAPID! Mobile/Carrier Test Software	M 897 279
CDMA options	
4470 Audio Option for CDMA-only units	M 248 653
4483 RAPID! Mobile/Carrier Test Software	M 897 242
WCDMA option	
1103 USIM and GSM Test SIM card	M 860 164
Accessories	
Carrying case	M 300 808
Rack mount set	M 378 260
4916 Antenna Coupler	M 248 641
4921 RF Shield	M 248 346
RF Shield and Antenna Coupler package	M 248 348

Wireless Telecom Group Sales Offices

Willtek Communications GmbH Ismaning Germany Tel: +49 (0)89 99641 0 Fax: +49 (0)89 99641 440 info@willtek.com www.willtek.com

Parsippany, NJ USA Tel: +1 973 386 9696 Fax: +1 973 386 9191

Cheadle Hulme, Cheshire United Kingdom Tel: +44 (0)161 486 3353 Fax: +44 (0)161 486 3354

Roissy France Tel: +33 (0)1 72 02 30 30 Fax: +33 (0)1 49 38 01 06

Singapore Tel: +65 6827 9670 Fax: +65 6827 9601

Shanghai China Tel: +86 21 5835 5718 Fax: +86 21 5835 5238

© Copyright 2009 Willtek Communications GmbH. All rights reserved. 4400/DS347/0109/EN

Note: Specifications, terms and conditions are subject to change without prior notice.

